Effect of Wind Turbine Wakes on the Performance of a Real Case WRF-LES Simulation

Paula Doubrava1, A. Montornès2, R. J. Barthelmie1, S. C. Pryor1, G. Giroux3, P. Casso2

1Cornell University, Ithaca, NY, USA
2Vortex, Barcelona, Spain
3WEICAN, North Cape, PEI, Canada
Wind farm drag parameterization[1,2] for grid sizes ≥ 5 D

How does the absence of a wind farm parameterization, or of any wind turbine model, affect the simulation performance?

*Performed by VORTEX
[1] Fitch (2016)
[2] Volker et al. (2015)
Effect of Wind Turbine Wakes on the Performance of a Real Case WRF-LES Simulation

Methodology

Climate Forecast System Reanalysis

\[\Delta = 9 \text{ km} \quad \Delta = 3 \text{ km} \quad \Delta = 1 \text{ km} \quad \Delta = 333 \text{ m} \]

\[\Delta = 38 \text{ km} \]

Meteorological Mast (MET)
Northern Wind Turbine (NWT)
Southern Wind Turbine (SWT)

Model Performance

Free Stream
Wake
Effect of Wind Turbine Wakes on the Performance of a Real Case WRF-LES Simulation

Methodology

- **Constant wake expansion**
 \[
 \text{width}(x) = D + 2kx
 \]

 \[k = \text{expansion factor} = 0.05^{[3]}\]

 \[x = \text{downstream distance}\]

 \[D = \text{rotor diameter}\]

- **NWT**
 - waked when \(\gamma_{\text{SWT}} \in [140^\circ, 169^\circ]\)
 - 11% of data

 \(\gamma = \text{nacelle position}\)

- **MET**
 - waked when \(\gamma_{\text{SWT}} \in [140^\circ, 182^\circ]\)
 - 16% of data

Measurements (PEIWEE[4])

- Turbines
 - 10’ means at z = 80 m
 - nacelle position, horizontal wind speed, power
- Met. mast
 - 10’ means from 10 Hz meas. at z = 60 m
 - horizontal wind speed and direction

Simulation

- WRF, two-way nesting
- Time series at three grid points closest to measurement sites
- 10’ means from 4 Hz output

Expected wind speed over-estimation is only seen at MET
Wind speed at NWT was under-estimated on average ($\delta_{\text{avg}} \sim -0.1 \text{ m s}^{-1}$)
Larger under-estimation of turbulence intensity at MET ($\delta_{\text{avg}} \sim -0.15$ vs. $\delta_{\text{avg}} \sim -0.06$ at NWT)
Wind direction errors similar at both sites, and can also be due to:
 - topographically forced directional turning $^{[4]}$
 - roughness elements, IBLs, displacement height $^{[5]}$

$\delta = x_{\text{sim}} - x_{\text{obs}}$ at coinciding 10’ mean time stamps

$^{[4]}$ Barthelmie et al. (2016)
$^{[5]}$ Benson (2005)
Effect of Wind Turbine Wakes on the Performance of a Real Case WRF-LES Simulation

Results -- Model Performance Under "Waked" vs. "Free" Conditions

- δ_w consistently larger than δ_f
 - Especially at MET where wind speed $\delta_w \sim 35\%$ higher than δ_f
- Model performance at NWT less affected by wake
 - Note: ~15 m escarpment adds to flow complexity
- Other phenomena not (or mis-) represented by model, e.g.
 - Surface layer treatment
 - Spatial resolution of BCs

<table>
<thead>
<tr>
<th>Variable</th>
<th>Unit</th>
<th>MET</th>
<th>NWT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wind Speed U</td>
<td>[m s$^{-1}$]</td>
<td>3.1</td>
<td>2.1</td>
</tr>
<tr>
<td>Wind Direction β</td>
<td>[deg]</td>
<td>35.5</td>
<td>40.2</td>
</tr>
<tr>
<td>Turbulence Intensity I</td>
<td>[-]</td>
<td>0.16</td>
<td>0.08</td>
</tr>
<tr>
<td>Power P</td>
<td>[kW]</td>
<td>495.4</td>
<td>385.8</td>
</tr>
</tbody>
</table>

Table: Temporal mean of model absolute errors.
Model consistently underestimated turbulence (waked and free)

- At both sites, better performance under free conditions
- High turbulence in measurements coincides with waked periods (large std. dev. over 10 minutes)
Model underestimated β differences between the two turbines

Similar error magnitudes in free vs. waked: not from wake-induced meandering but other surface phenomena
Effect of Wind Turbine Wakes on the Performance of a Real Case WRF-LES Simulation

Results -- Post-Simulation Wake Correction

- **Jensen**\(^[6]\) wake
 \[
 VD(t) = \frac{1 - \sqrt{1 - C_T(t)}}{(1 + \frac{kx}{R})^2}
 \]
 \[
 U = U_\infty (1 - VD)
 \]

- **Advantages:**
 - easy to implement
 - avoids costly CFD + SFD

- **Disadvantages**
 - only wind speed (no TI/direction)

\([6]\) Jensen (1983)
WRF-LES real case short validation exercise

(separately for "free" vs. "waked" conditions)

Clear impact of wake only appears on measurement site that is further onshore

Dangers of blindly applying a post-processing tool

(other error sources e.g. complex terrain, terra incognita)

Not there yet -- before worrying about turbine-induced turbulence, ensure adequate meso-micro coupling and high accuracy free stream ABL simulation