Experiments in the wind turbine far wake for the evaluation of analytical wake models

Luis García, Mari Vatn, Franz Mühle and Lars Sætran
Introduction

• Wakes in wind farms:
 – Lower efficiency
 – Fluctuating loads

Horns Rev offshore wind farm west of Denmark. Credit: Vattenfall
Introduction

• Important to know the evolution of the parameters
Velocity decay & Width development
Analytical model

• Schlichting model
 – Blunt bodies

• Objective
 – Wind turbines
Parameters

- **Velocity Decay**
 \[U_1 = U_\infty - U \]
- **Width development**
 - Half depth width
 \[b_{1/2} = f(x, U_1) \]
Analytical description of wakes

- Analytical expressions in terms of the downstream distance.

<table>
<thead>
<tr>
<th>Type of flow</th>
<th>Width development</th>
<th>Velocity decay</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-D wake</td>
<td>$x^{1/2}$</td>
<td>$x^{-1/2}$</td>
</tr>
<tr>
<td>Circular wake</td>
<td>$x^{1/3}$</td>
<td>$x^{-2/3}$</td>
</tr>
</tbody>
</table>

$$\frac{b_{1/2}}{D} = C_b \cdot \left(\frac{x}{D}\right)^{1/3} \quad \quad \frac{U_1}{U_\infty} = C_u \cdot \left(\frac{x}{D}\right)^{-2/3}$$

- Velocity distribution

$$\frac{u_1}{U_\infty} = \frac{\sqrt{10}}{18\beta} \cdot \left(\frac{x}{C_T A}\right)^{-2/3} \cdot \left\{1 - \left(\frac{z}{b}\right)^{3/2}\right\}^2$$
Analytical description of wakes

- Analytical expressions in terms of the downstream distance.

<table>
<thead>
<tr>
<th>Type of flow</th>
<th>Width development</th>
<th>Velocity decay</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-D wake</td>
<td>$x^{1/2}$</td>
<td>$x^{-1/2}$</td>
</tr>
<tr>
<td>Circular wake</td>
<td>$x^{1/3}$</td>
<td>$x^{-2/3}$</td>
</tr>
</tbody>
</table>

$$\frac{b_{1/2}}{D} = C_b \cdot \left(\frac{x}{D}\right)^{1/3} \quad \frac{U_1}{U_\infty} = C_u \cdot \left(\frac{x}{D}\right)^{-2/3}$$

$$\ln \frac{b_{1/2}}{D} = \ln C_b + \frac{1}{3} \ln \frac{x}{D}$$

- Velocity distribution

$$\frac{u_1}{U_\infty} = \frac{\sqrt{10}}{18\beta} \cdot \left(\frac{x}{C_T A}\right)^{-2/3} \cdot \left\{1 - \left(\frac{z}{b}\right)^{3/2}\right\}^2$$
Analytical description of wakes

• Analytical expressions in terms of the downstream distance.

<table>
<thead>
<tr>
<th>Type of flow</th>
<th>Width development</th>
<th>Velocity decay</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-D wake</td>
<td>$x^{1/2}$</td>
<td>$x^{-1/2}$</td>
</tr>
<tr>
<td>Circular wake</td>
<td>$x^{1/3}$</td>
<td>$x^{-2/3}$</td>
</tr>
</tbody>
</table>

\[
\frac{b_{1/2}}{D} = C_b \cdot \left(\frac{x}{D}\right)^{1/3}
\]

\[
\ln \frac{b_{1/2}}{D} = \ln C_b + \frac{1}{3} \ln \frac{x}{D}
\]

• Velocity distribution

\[
\frac{u_1}{U_\infty} = \frac{\sqrt{10}}{18\beta} \cdot \left(\frac{x}{C_T A}\right)^{-2/3} \cdot \left\{1 - \left(\frac{z}{b}\right)^{3/2}\right\}^2
\]
Experimental setup

• Instrumentation
 – Wind tunnel
 – Laser Doppler Velocimeter
 – Turbine

• Full 2-D wakes
• Lines wakes
• 2 turbulence ambient conditions
Results of mean velocity 2 D full wakes

- Downshift of the wake due to tower effect [1]

Results of mean velocity in the xz plane

- Expansion of the wake
- Decrease of the velocity decay
Discussion of the velocity decay

Velocity decay Low TI

- Deviation of 2.0%

\[
\frac{U_1}{U_\infty} = C_u \cdot \left(\frac{x}{D} \right)^{-2/3}
\]

Velocity decay High TI

- Deviation of 2.5%
Discussion of the width development

Width development Low TI

- Deviation of 2.5%

\[
\frac{b_{1/2}}{D} = C_b \cdot \left(\frac{x}{D}\right)^{1/3}
\]

Width development High TI

- Deviation of 3.0%
Discussion of the velocity distribution

- High degree of agreement
- Some deviations in the edges

\[
\frac{u_1}{U_\infty} = \frac{\sqrt{10}}{18\beta} \cdot \left(\frac{x}{C_T A} \right)^{-2/3} \cdot \left\{ 1 - \left(\frac{z}{b} \right)^{3/2} \right\}^2
\]
Turbulence intensity
Turbulence intensity models

• Three different models
 – Crespo and Hernandez
 – Quarton
 – Frandsen and Thogersen

• Input parameters

<table>
<thead>
<tr>
<th>Parameter/Model</th>
<th>Input parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crespo and Hernandez</td>
<td>I_∞, a, D</td>
</tr>
<tr>
<td>Quarton</td>
<td>I_∞, C_T, χ_N</td>
</tr>
<tr>
<td>Frandsen and Thogersen</td>
<td>D, V_{hub}</td>
</tr>
</tbody>
</table>
Results of turbulence intensity in the xz plane

- Decrease of the added turbulence intensity
Discussion of turbulence intensity

• Good agreement of the measurements with the models
Conclusion

• Investigation of the Schlichting model for wind turbines
• Good agreement between experiments and theory
• Gaussian shape prediction
• Fairly well prediction of the turbulence intensity of the wake

• Analytical models can describe the wake characteristics
Conclusion

• Investigation of the Schlichting model for wind turbines
• Good agreement between experiments and theory.
• Gaussian shape prediction
• Fairly well prediction of the turbulence intensity of the wake

• Analytical models can describe the wake characteristics

Thank you for your attention, Questions, comments?